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Abstract: The purpose of this research is to study and develop the formulation of a rheological law for 

composite materials with elasto-plastic behaviour in cold compression. Starting from the generally 

known relationships in literature, the hypoelastic model proposed for the composite materials behaviour 

(as powder materials) has been developped/explained, ensuring the understanding of the research. The 

hypolastic theory has been used for modeling the continuous transition from elastic to plastic state for 

a powder material.The material behaviour is described through an isotropic tensor relationship between 

the deformation speed tensor, Cauchy’s stress tensor and its derivative in relation to time (the Jaumann’s 

derivative). Only the linear part has been used from the general form of the law which depends on scalar 

functions. The calculations lead to relationships depending on five parameters which are identified 

according to experimental data. A numerical simulation of the stress-strain evolution during the simple 

compression of a diepressed powder sample is made; the numerical simulation has been validated by 

the experimental results. 
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1.Introduction 
Composite materials are present in all activity fields and have proven to be a class of materials with 

high potential in ceramic, pharmaceutical, chemical [1], automotive [2,3], aerospace [4], and electronics 

industry [5], in medicine [6], defense [7] and in the field of sports equipment manufacturing. Metal 

matrix composites represent 10% of the production of composite materials; as matrix metals are chosen 

Al, Ti, Mg, Ni, Cu, Fe, [8]. Specific processes of powder metallurgy are used for the elaboration of 

composites materials [9]. The cold pressing process is of great importance in the manufacturing of the 

powder materials [10]. The powders densification involves a metalurgical aspect and a mechanical one. 

From a mechanical point of view, the densification comes from the plastic deformation of cold 

compressed particles and from the viscoplastic deformation of the sintered particles. The study of the 

mechanical behavior of the cold pressed powders is important to predict the response of the powder 

material in terms of stresses and strains [11-16]. 

Metal powders have an elasto-plastic behaviour during compaction, and is very difficult to identifie 

the elastic behaviour zone and the plastic one; the size of these zones evolves during powder compaction. 

Modeling the transition from elastic to plastic state is a challenging research issue; some authors work 

on the estimation of the relative density corresponding to the transition from the elastic to plastic state    

affected by the particle size [17]; other authors focus their work on a densification equation derived from 

deformation occurring in the powder mix during cold compaction, having a physical meaning also 

individuating the parameters describing the densification behaviour and in turn the compressibility of 

the different powders investigated [18]. Other researchers study the evolution of elastic strains vs. 

applied stress with the presence of phase-specific elasto-plastic regimes. The nature of the elasto-plastic 

transition is uncovered by the “tangent modulus” analysis and correlated to the microstructure of the 

studied nanocomposite. A new criterion for the determination of the macroyield stress is given as the 

stress to which the macroscopic work hardening becomes smaller than one [19].  
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Satisfactory models describing densification were proposed as the result of the axial and radial 

stresses acting on the powder column.  The recorded data are very  precise from an  industrial perspective 

mainly in the last stage of compaction directly related to final green density [20].  

An original approach is based on an incremental variational principle according to which the local 

stress–strain relation derives from a single incremental potential constructed from a free energy and a 

dissipation function [21]. 

In this paper, the mechanical behaviour of powder materials is described through a constitutive 

model.  An analytical elastic theory or a rigid-plastic scheme will idealize the powder behaviour. Stutz’s 

[22] hypolastic theory has been used for modeling the continuous transition from elastic to plastic state 

for an iron powder. From the most general form of the Stutz’s constitutive model which depends on ten 

scalar functions is utilized only the linear part, having as arguments the independents invariants of the 

Cauchy’s stress tensor, of deformation speed tensor and the powder relative density. Imposing the 

condition of homogeneity in relation to time and using a particular issue for the scalar functions, the 

constitutive model is finally based on five parameters i depending on the stress tensor invariants and 

on the powder relative density. The i functions are identified for an iron powder, by imposing as the 

constitutive model could describe a linear elastic behaviour for infinitesimal deformations and a perfect 

plastic behaviour for large deformations. 

 

2.Materials and methods 
2.1. Theoretical part 

The hypoelastic model  

The quasi linear part of the most general form of Stutz’s hypoelastic model, [1] is: 
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a0, a1, a2 – scalar functions of the invariants of  and d. 
                   ~          ~ 

The simplified form of the hypoelastic model written in rheological axes is given by: 
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σ - Cauchy’s stress tensor; 

~
σ̂ - Jaumann’s derivative of

~
σ  [23];  
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dε = - deformation speed tensor; 
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 i - scalar functions depending on stress tensor invariants; 

~
δ - unity tensor; 
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M - joint invariant of

~
σ and .d

~  
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The constitutive law (2) can be decomposed in the isotropic part (3) and a deviatoric part (4), such 

as: 
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Introducing (2) and (3) in (6) and, we have: 
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To a plastic state, S1=constant, =2
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(3) and (7) will give (8): 
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Considering the simple compression, z ≠ 0, r=0 and (2) becomes (9) and (10): 
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z , r - axial and radial normal stresses;
 

 
rz ε,ε - axial and radial strains; 
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Introducing E1 and M in (10), the Poisson’s ratio ( ν ) can be calculated: 
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3.Results and discussions 
3.1 Calculus and identification of the parameters  i. Numerical simulation 

Hypothesis: at the plastic state, we consider == pνν constant (we consider 45,0νp =
 
- Figure 2 [24]) 

and zpz σσ =
 
( zpσ = axial normal stress at the plastic state). The value of pν  is determined using the 

experimental curves (Figures 1, 2). Figure 1 shows the experimental axial normal compaction stress (z) 

versus axial strain (z) to the plastic state. A die-compressed iron sample, precompacted to a relative 

density =0,9 was used. Simple compression tests (loading-unloading) were carried out, as shown in 

Figure 1. The “P” curve (for the plastic state) was obtained by substracting the elastic part from the 

simple compression curves “SC” [24]; MPa210σz   on the „P” curve. The elasticity modulus E0 is 

calculated as the slope of the linear part of “P” curve: E0=81598 MPa.  

Figure 2 shows the axial normal compaction stress (z) versus axial strain () in simple compression 

at the plastic state, for different Poisson’s ratios values ( 0ν ). 

 

3.2.Calculus of the parameters 0 and 1   

The relationship (13), written at the plastic state (with the Poisson’s ratio   = p) gives 3: 
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Figure 1. Experimental stress-strain distribution 

 for simple compression (to the plastic state) 

       
Figure 2. Experimental stress-strain distribution for 

simple compression (for different Poisson’s ratios values) 
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If (14) is substituted to (8), using zp1 σS =  and 2
z

2
2 σ

3

2
S = for the simple compression, 4 can be 

calculated: 
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The relationships (9) and (13) give (16), where 3 and 4 are given by (14) and (15): 
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If the powder material has infinitesimal deformations, the deformation speed vector components dij 

are not too different from the derivatives in relation to time of the deformation components ij. 

Considering the powder material in a neutral state, z=0 (at the beginning of the “P” curve), the  classical 

relation of elasticity (Hooke’s law) is found; (16) becomes (17): 
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Hooke’s law and (17) give:             
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E, E0 - Young modulus; 

with Lame’s parameters and p=0: 
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Finding Hooke’s law suggests to interpret the parameters 1 and 0 like Lame’s parameters (1=2, 

0=). Then: 
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1 from (21) substituted to (18) gives 0: 
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(22) 

The relationships (21) and (22) give the values of the parameters 0 and 1 (Table 1), for different   

experimental values of 0; E0=81598 MPa, MPa210σz  - from the Figure 2. 

Table 1. The values of some parameters i 

0 0 (MPa) 1 (MPa) 2 

0.2 22666 67998 -107.85 

0.25 32639 65278 -130.5 

0.3 47075 62767 -164.5 

0.35 70516 60442 -221.2 

0.45 253235 56274 -674.5 

https://revmaterialeplastice.ro/


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 58 (2), 2021, 167-175                                                              172                                          https://doi.org/10.37358/MP.21.2.5488                                                                 
    
 

 

3.3.Calculus of the parameter 2 

For the isotropic compression, M=0; (3) becomes (23): 
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(23) 

The isotropic part of the Jaumann’s derivative of  (23) gives:  
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m –the slope of the experimental isotropic compression curve [25], (Figure 3);  

                                                            
 - relative density of the die-compressed iron sample, before simple compression. 

 

Figure 3 shows the experimental results of isotropic compression - average pressure versus relative 

density. There are many curves fitted on the experimental results of the Figure 3: 
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We have used the second degree polynome; (24) becomes (27): 
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ρd

dP
m +−==

 
(27) 

 

 

 
Figure 3. Experimental results of isotropic compression; 

average pressure versus relative density 

For =0.9, m=2433.46, S1 and 2 can be calculated (Table 1). 
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3.4. Calculus of the parameters 3 and 4 

We consider a proposed elastoplastic model [9], with the density as the hardening parameter; the 

yield surface for some density is shown in Figure 4. It should be noted that to each normal stress z 

following the straight line of simple compression corresponds a limit value on the yield surface ( p2S
ˆ

). 

The calculus of 3 and 4 involves some changes in the relationships (14) and (15): zp will be replaced 

by z in (14) and 2
zp will be replaced by zp in (15). These values are calculated using the proposed 

yield surface. 

 
Figure 4. Yield surface 

 

The parameters 3 and 4 can be calculated using (14) and (15) modified as explained, using the 

experimental values of p, , and different values of the normal stress z for an iron powder. 

 

3.5. Numerical simulation 

A computer program using the trapezes method is used to integrate the hypoelastic theory (the 

relationship 16). The evolution of the axial normal stress and strain in simple compression, of a die-

compressed iron powder sample was obtained (Figure 5).  

 

 
Figure 5. Axial normal compaction stress (z) versus 

axial strain (z). Numerical simulation of simple compression 

 

4. Conclusions  
The paper presents an orriginal approach of the continuous transition from elastic to plastic state for 

a powder material, starting from the hypoelastic model [22].  A development of Stutz criteria (1), based 

on tensor calculus was performed, using the explicit form of the used tensors and their deviatoric tensors. 

Under certain original circumstances (the conditions imposed for the simple compression of the powder 

material in the case of plastic state and the identification of the Poisson’s ratio), the relationship (2) 

allows to describe a perfect plastic flow of the powder material at the critical state. To an appropriate 
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and original choice of the i functions (based on the theoretical and experimental identification of the 

Hooke’s law and Lame’s parameters), the relationship (1) will be able to describe the continuous 

evolution of the material from infinitesimal deformations to large deformations, when the powder 

material has a perfect plastic behaviour. The validity of the hypoelastic model can be shown by 

comparing the results of the numerical simulation (Figure 5) with the experimental curve (Figure 1). The 

numerical simulation is not influenced by the powder relative density. The study of the transition from 

the elastic to plastic state for powder materials with elasto-plastic behaviour in cold compression is 

performed differently in literature, as shown in Introduction.      
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